If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-20x-150=0
a = 10; b = -20; c = -150;
Δ = b2-4ac
Δ = -202-4·10·(-150)
Δ = 6400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6400}=80$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-80}{2*10}=\frac{-60}{20} =-3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+80}{2*10}=\frac{100}{20} =5 $
| -2v/7-2=v-6 | | 2(5v=3)-4(7v=1)=-88 | | 2(x+5)-4x=-24 | | 6-13-5x+x=23 | | -4+12+3x=-16 | | 2x+1÷2=2 | | 7u-3=21 | | 2x-2.6=1.3+x | | 0.4x-2=2-2.4x+x | | x-2.5=3.5+0.5x | | 12x-18=12x+18 | | 3x-219=81-7x | | 93=5u+8 | | 0.25x-0.25+0.75(x-1)=1 | | 0.4x-1=0.3x-0.5 | | 8x9=10-5x9 | | -z+2z=-1z | | 2x+(-12)=8 | | 38/c-7=12,c= | | 35-5x=19+11x | | 22-t=13 | | 0.5a-4=2,a= | | 14+18f=42+11f | | 14+18f=42+1f | | 14f+18=42f+11 | | 10+0.4w=1/2w-10 | | (3+x)-(2×2)+6=9 | | 7n-18=9n+6 | | 0.4(3.2x+2(-x=2x+1.8 | | 9y-7y-9=31.38 | | -3(2x-1)=-x-2 | | X+2x-2+3x+.5=38 |